
Journal of Statistical Physics, Vol. 91, Nos. 1/2, I998

1. INTRODUCTION

The problem of numerical approximation of the Boltzmann equation has
a long tradition and a huge literature. Recently a particular interest has
been focused on methods which can be considered as finite difference
approximations(3,13) In our previous paper(15) we have discussed one of
such algorithms introduced by Goldstein et al.(9) (cf. also other papers
devoted to this subject.(2,10,11)) We have shown the consistency of the algo-
rithm and made an error estimation. In the present paper we are addressing
the problem of convergence of this algorithm.

To prove that solutions of a certain numerical approximation are con-
vergent to a solution of the corresponding continuous problem we have to
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We prove the convergence of finite-difference approximations to solutions of the
Boltzmann equation. An essential step is the proof of convergence of discrete
approximations to the collision integral. This proof relies on our previous
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know that the continuous problem possesses a solution. In the case of the
Boltzmann equation, we know that for general initial data a solution exists
only in a weak sense. That cause additional troubles in the proof of con-
vergence. Hence we decided to consider separately two cases. The space
homogeneous equation, where there exists the unique strong solution of
the corresponding Cauchy problem. In that case, we are able to prove
strong convergence of the numerical algorithm. For the space dependent
Boltzmann equation, we have to approximate the weak solutions of
DiPerna-Lions. This problem has been partially solved by Mischler.(13) We
use his results and our proof of convergence for the collision integral(15) to
show a weak convergence of a certain approximation to the DiPerna-
Lions solution.

2. NOTATION AND PRELIMINARY RESULTS

Let us consider the Cauchy problem for the space-homogeneous
Boltzmann equation

with the collision term Q(f, f) defined by the formula

Here v and v, are precollision velocities and w = v —v1 v' and v' are
postcollision velocities given by the expressions

In formula (2.2) du denotes the integration with respect to the normalized
Lebesgue measure on the surface of the unit sphere S d - 1 , i.e., f t ( S d - 1 )= 1,
and q(w, u) is the collision kernel which is assumed to fulfill the Carleman
condition
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This equation is approximated by a Discrete Velocity Model ( D V M )
on a discrete lattice in the velocity space. To this end, we introduce in
Rd a regular grid Qh= {ve Rd : V = hn, neZd], where h is an arbitrary
positive number (mesh step). Let f i ( t ) =f (v i , t), where v,£Qh, and fD

denote the sequence { f } . Then a discrete version of (2.1) can be written as

The summation in this equation is in fact taken over a set of grid
points, i.e., indices i, j, k and / are abbreviations for v,, v,vk and v, and the
set I is defined as follows. For two incoming velocities vi and v, we set

with rij being the cardinality of Vij. Then

The coefficients rkl are approximations to the continuous collision
kernel in integral (2.2)

where qkl = q(|vi-vj|, (v k -v l ) / |v k -v l | ) .
That approximation was discussed in details in our previous

papers.(2,15) Using the classical theory of DVM,(4,8) it is easy to prove that
this model possesses essential features of the full Boltzmann equation: con-
servation laws, H-theorem and existence of stationary states in the form of
Gaussian distributions. It can also be shown that the space of summational
invariants is reduced to mass, momentum and energy. For more details we
refer to other publications.(3,12,16)

To make a comparison between solutions of (2 .1) and (2.5) we have
to define discrete solutions on the whole Rd. To this end, let us observe that
the grid Qh defines a partition of Rd into a countable set of cells Ai of size
hd and centers in points v, = An (like previously with velocities, we use for
cells a single index, i.e., writing A, for a cell with center v , ) . Then we can
extend a discrete solution on the whole Rd as a step function constant on
cells A. An essential difficulty in that procedure is the correct definition of
the collision kernel.
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First, let us replace kernel q(w, u) with the 4d-dimensional symmetric
collision kernel

where S(x) denotes the Dirac function (in the collision integral with kernel
<r(v, v1 v', v'1) integration is carried over (R 3 d ) . To discretize this kernel we
proceed as follows. First, we say that a pair of cells (Ak, Al) is admissible
for a pair (A,, Aj), if vk, v,e Vt], where va denotes the center of a cell Aa.
Then we can write

Defining the step function

we can write

erh is therefore the modified collision kernel as proposed by Mischler.(13)

Let now fh be a step function corresponding to the solution fD= {f,}
of DVM in the whole Rd, i.e.,

Then fh is a solution of the Cauchy problem

where Qh denotes the collision integral with kernel erh and an obvious
extension of integration domain to R3d.
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We also consider truncated versions of (2 .1) and (2.5) introducing
collision kernels with compact support112)

and its corresponding discrete version

Distribution functions f and fh truncated to the ball B(0, n) are denoted by
fn and fn, respectively. They are solutions to the Cauchy problems:

Here Q" and Qn are collision operators corresponding to collision kernels
an and an respectively.

The functions f,fn,fh and fn, which are solutions to the Cauchy
problems (2.1), (2.9), (2.6) and (2.10), will be considered in the weighted
L1-spaces

with the norm

fD which is a solution of DVM (2.5) will be considered in l1-type
spaces with polynomial weight
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and the norm

Remark 1. In what follows, integration of step functions in Rd can
be treated in two different ways. First, integration can be considered as
performed with respect to the usual Lebesgue measure in Rd. This is the
way we are integrating in all estimations calculated in the paper. Second,
we can think of integration with respect to an atomic measure concentrated
on the grid points v,, with the measure of each point equal to hd. This is
the way we are integrating in all calculations that lead to conservation
laws.

We end this section by proving some useful properties of the intro-
duced models. First, we show that classical symmetry properties of the
collision kernel a still hold for the kernels a", ah and CTn.

Lemma 1. Let a be one of the collision kernels an ,rh or ern . Then

Proof, (i) and (ii) are a straightforward consequence of the definition
of an, crh and ern of the symmetry of a. (iii) is obvious for a" since an < a.

Let us prove (iii) for o" = 7h (the case a = an is included in that case
since o n

< s h ) . Let v,.= Ch(v), v J = C h ( v 1 ) and

where the summation is taken over all grid points on the sphere spanned
by vi, and vj. By simple estimates we obtain

Lemma 2. Let Qh be a given discretization of Rd and a: R4d' -» R +

be a non-negative function which satisfies conditions of Lemma 1. Let us
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assume that for CT(V, v,, v', v) =0 the following conservation laws are
fulfilled

Let Qa denote the collision integral with kernel r and f, geL1
s + 1 / 2 ( R d ) b<

two nonnegative functions. Then

where c is independent of h, for bounded h, and the dependence on a is
only through a constant in Carleman's condition (2.4).

Proof.

Using Lemma l(iii), we obtain for the second term

For the first term one has to estimate the difference v2 +v2 — v ' 2 — v ' 2 . By
the assumptions of the lemma and the estimation |Ch(v) —v| s^^/d/2h, we
obtain

Therefore
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which leads to the estimation

for bounded h. This gives for the first term a bound similar to that
obtained for the second term. |

A drawback of the last lemma is that one controls variation of
moments of Q by higher moments of the difference of arguments. The
following lemma due to DiBlasio(6) does not exhibit this drawback. We
present here a generalization of that lemma on the discrete case (which
includes the continuous one by setting h = 0).

Lemma 3. Under the assumptions of Lemma 2, for any f,ge
L13/2(R

d) (f, g nonnegative), we have

where c is independent of h, for bounded h, and the dependence on a is
only through a constant in Carleman's condition (2.4).

Proof.

Hence

where V = (v, v1; v', V). To estimate the last integral let us take a non-
negative function <f>: R2d -> R+ and consider the integral
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By conditions (i) and ( i i ) of Lemma I we obtain

which together with estimation (2.12) gives

Let us set <fr(x, y) = ( f ( x ) - g ( x ) ) ( f ( y ) + g(y)) + ( f ( y ) - g ( y ) ) x
(f(X) + g(x)).

Then we obtain

Then using condition (iii) of Lemma 1 we obtain

for any bounded h. |
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3. EXISTENCE AND STABILITY RESULTS

There exists an extensive literature on the Cauchy problem for the spa-
tially homogeneous Boltzmann equation. In particular, Arkeryd's proof(1)

of the existence of solutions includes all cases we are treating here. More
precisely, for a collision kernel satisfying Carleman's condition (2.4), there
exists a unique non-negative solution to the Cauchy problem (2.1) with a
non-negative initial data f 0eL| . Moreover, if f 0eL 1 , s> l , then this
property is conserved in time, i . e . , f ( / t . ) eL 1 .

These results can be applied to (2.6), (2.9) and (2.10) since correspond-
ing collision kernels have symmetry properties and satisfies Carleman's
condition (2.4) (Lemma 1). As a consequence, existence, uniqueness and
stability results also hold for the Cauchy problems (2.6), (2.9) and (2.10).

We could so far go directly to the next section but in view of the trun-
cations we have introduced previously (see (2.7) and (2.8)) one can look at
the problem of existence and stability in a new way. More precisely, solu-
tions in Rd can be considered as limits of solutions of the truncated
problems. For the sake of consistency, we present in detail a proof based
on that idea, keeping in mind that many useful preliminary results are not
new at all. That proof can be sketched in three steps: the first one consists
in proving that there exists a unique solution to the truncated problem.
Second, one shows that the sequence of solutions with increasing domains
is the Cauchy sequence in a suitable Banach space and thereby converges
to a certain function / The last step amounts to pass to the limit in the
truncated equations and shows that / is the unique solution of the limiting
Boltzmann equation (or its discrete version).

Step 1. We refer to Arkeryd(1) to get the existence of a unique solu-
tion of (2.9) and (2.10) in a given ball B(0, n).

Proposition 1. Assume that 0 < q ( w , u ) < K for every w e R + ,
u e sd-1, where K is a given positive constant. Then there exists a unique
and non-negative solution f e C 1 (R + , L 1 ( R d ) ) of (2.1) for every f°>0 in
L1 and we have

Moreover, if f0eL1 with s>1, then

where c([ depends only on t1 ||f°||1 and s but not on K.
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In this proposition, the boundedness of q allows to prove the existence
for a small time interval while its symmetry property allows to iterate this
procedure for any time. It is therefore of major importance that truncated
collision kernels (2.7) and (2.8) are bounded and preserve the collision
invariance (cf. Lemma 1).

One should remark that the proof is so far not different from
Arkeryd's proof, the only difference appears in the truncation: in one case
the collision kernel is truncated with respect to relative velocity while in the
other velocities themselves are bounded.

It is also important to remark "the mild influence of q on the moment
estimates for bounded time intervals" (cf. Arkeryd(1)). In particular,
moment estimations are independent on the upper value of q, i.e., on the
size of the domain.

Step 2. Let us now look at the sequence { f n } n e N (resp. { f n } n e N )
of solutions of the truncated problems (2.9) (resp. (2.10)) in B(0, n).

Proposition 2. Let f°eL1 with s>3/2. Let fn ( r e s p f n ) be a solu-
tion of (2.9) (resp. (2.10)) in B(0,n) and {fn}n e N ( { f n } n e N ) be a sequence
of solutions for increasing domains. Then { f n } n e N ( { f n } « S N ) converges to
a non-negative function f ( f h ) in C°([0,t,], L l

r ( R d ) ) n C1([0, t],
L 1 _ 1 / 2 (R d ) ) for arbitrary t1, and r<s. Moreover f(t, - ) e L ] .

Proof. We present the proof only for {f n |}neN as the continuous case
is included in that case (take h = 0). We shall omit the index h and replace
fn by fn, Qn by Qn and an by an. Let n, m be two integers such that m < n.
Then using a standard argument, we have



318 Palczewski and Schneider

Applying Lemma 3 and Proposition 1, we obtain

for arbitrary t1 (c, does not depend on n and m).
For the second term we have the estimation

as a^on . Here V = (v', V', v, v,), f 1 =f m (v ' ) , f1 = fm(v\), f m =f m (v) and
f1 = fm(v i)- Symmetry properties of a and am and non-negativeness of fm

yield

Now,

where H(x) is the Heaviside function. Using again microreversibility and
bound (iii) of Lemma 1, we obtain

for any s>3/2 and bounded h. This last inequality together with (3.1) gives
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Since

then using Gronwall's lemma, we obtain

Hence, {f}neN is a Cauchy sequence of non-negative functions which
converges to a non-negative function f in C°([0, /,], L 1 ( R d ) ) . Moreover,
using Fatou's lemma, one can pass to the limit in

so that | | f ( t , .)||< C,s,f Hence,

for 0<t<t1 and arbitrary R. A suitable choice of R and n yields

Now, Lemma 2 gives

Therefore {f n } n e N is a Cauchy sequence in C1([0, t,], L 1 _ 1 / 2 (R d ) ) , r<x,
which converges to a function F. But according to (3.4), that limit must be
f so that F = f a.e. |

Step 3. We can now give a proof of existence, uniqueness and
stability for the Cauchy problems (2.1) and (2.6) (we observe that (2.5) and
(2.6) are in fact two different formulations of the same problem).

Theorem 1. Let f0 be a non-negative function in L1, with .s>3/2.
Then, for an arbitrary t1 there exists a unique and non-negative solution
f to the Cauchy problem (2.1), f eC0([0, t1], L 1 ( R d ) ) n C1([0, t1],
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L 1 _ l / 2 ( R d ) ) , r<s. This solution is a uniform limit of solutions to the trun-
cated problems as described in Proposition 2. Moreover, we have
| | f ( t , . ) | | o = | | f o | | o , ||f(t,.)||= |f0||1 and

where ct1 depends only on t1 and moments of f0.
The same conclusion is valid for the discrete problem (2.6) (or equiv-

alently (2.5)).

Proof. Let f be the limit of a sequence {fn}nen of solutions in
bounded domains (see Proposition 2). Then f(t, . ) e L 1

r ( R d ) and Lemma 2
implies that Q(f, f)(t, • ) e L l

r _ l / 2 ( R d ) (r <S s, t < t 1 ) . After calculations
similar to Proposition 2 one obtains

where we have used the uniform boundedness of moments of fn and f.
Hence, Q n ( f n , fn) -> Q ( f , f ) strongly in C0([0, t1], L l ( R d ) ) .

On the other hand, d f n / d t - > d f / d t in C0([0, t1], l 1
r - 1 / 2 ( R d ) ) , r<s, so

that f is a solution of the Boltzmann equation in the whole domain.
If g is also a solution of the Boltzmann equation with the same initial

data, Lemma 3 gives

for 0 < t <t , . Applying Gronwall's lemma, we obtain f = g. |

Remark 2. Results on existence and uniqueness of solutions for the
continuous Boltzmann equation better than Theorem 1 are known in the
literature for a long time. The most recent is the theorem by Mischler and
Wennberg(14) in which it is assumed only that f0eL{. The advantage of
our Theorem 1 is the fact that the theorem remains valid both in con-
tinuous and discrete case. Essential for our future considerations is,
however, the fact that solutions of the truncated problems converge to the
solution of the Cauchy problem in Rd.
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4. CONVERGENCE

We can now study the convergence of discrete solutions to the con-
tinuous solution of the space homogeneous Boltzmann equation (2 .1) . The
convergence leans essentially on the approximation (2.5) of the collision
integral. The following consistency result is taken from our previous
paper.(15)

Proposition 3. Let q be a continuous collision kernel such that
(2.4) holds and f be a function in C0(Rd)n L 1 ( R d ) , with ,s>2, d>3. Then

uniformly on every compact set T.

That result has to be understood as follows: suppose that v is a given
velocity in a compact set T and denote I2 A (v) = {we Rd: w = v+ hn,
n e R d } , then the previous quadrature applied in v with quadrature points
in I2A(v) converges to Q ( f , f ) ( v ) as h-»0. Moreover, this convergence is
uniform with respect to v in T.

We are concerned with the approximation of solution of the Boltzmann
equation by numerical solutions. From that point of view, discrete velocity
models with infinite number of velocities cannot be considered and we have
to use truncated discrete velocity models which are well suited for numerical
purposes. Then we expect to obtain a result of the form: solutions of trun-
cated discrete velocity models tend to the continuous solution as the
domain of computation is increased and the step h diminished. This is the
conclusion of the following theorem.

Theorem 2. Let f be a solution of the space homogeneous
Boltzmann equation ( 2 . 1 ) with initial data f0e C 0 ( R d ) n L 1 ( R d ) , for s>3/2|,
d>3. Let fn be a solution of the Cauchy problem for DVM (2.9) in the
ball B(0, n) with step h and initial data f 0 ( C h ( v ) . Then

where E ( h ) — » 0 as h —»0 and c is a constant depending only on t1, f0

and s.

Proof. From the assumptions of the theorem and results of
Carleman(5) and Arkeryd ( 1 ) (see Proposition 1) it follows that the solution
of Eq. ( 2 . 1 ) is in C ° ( R d ) n L 1 ( R d ) . Analogously, from Theorem 1 , f n ( t ) is
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in L1 with the norm independent of n. Hence we can consider the norm of
the difference of these two solutions

We shall now estimate the three terms separately. For the first term we
have

For |v| <m we make the following decomposition

Q(f, f) is uniformly continuous on compact set [0, t{] xB(0,m), so that
the first term tends uniformly to zero on that set. Second term is the error
of the quadrature formula (4.1) which tends uniformly to zero on
[0, t1 ] x B(0,m). As concerns the last term, we remark that the positive
part of Qh(f, f) is piecewise constant so that

and consequently that term converges uniformly to zero on [0, t1]x
B(0, m). Finally, we obtain

where sm(h) tends to zero with h for fixed m.
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For |v| > m we can write

The first term is easy to bound, while for the second we have to use
inequalities (2.12) and

Proceeding as in (3.2) we obtain

Therefore

for any m e R+. For E arbitrary small, let m be such that e/2 = m3/2-s and
/? such that £ m ( h ) < e / 2 . Then

where £ —> 0 as h —> 0.
We can now proceed to the estimation of E2 which is actually similar

to (3.2) (see Proposition 2). Then

Finally one can apply Lemma 3 to bound E3

Collecting the estimates for E1, E2 and E3, we have

which using Gronwall's lemma gives the assertion of the theorem. |
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5. THE SPACE DEPENDENT BOLTZMANN EQUATION

In this section we consider the Cauchy problem for the space dependent
Boltzmann equation

This problem have been considered by Mischler(13) in the frame of the
DiPerna-Lions solutions.(7) To obtain the renormalized solution of (5.1) in
the sense of DiPerna-Lions it is necessary to assume that the initial data
f0 fulfills the condition

Then the Cauchy problem (5.1) possesses a renormalized solution f(t)
which satisfies the condition

To approximate this solution by a discrete velocity model we discretize
the velocity space like for the space-homogeneous equation and leave the
configuration space unchanged. This leads to the hyperbolic system of
equations

As in the previous section, we have to show an existence theorem
for that system. Because there is no global existence result for DVM,
Mischler(13) has modified this system of equations by a truncation

where p = ' hdf, and KR(X) = min(x, R)/x.
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The last equation can be written in terms of the step function fh like
in the previous section. This time, however, fh = fh( t, x). Then we have

where ph = lRd,fhd
v and Rh is a positive constant, which will be chosen

later. Then, as Mischler observed, the global existence theorem follows by
the Banach fixed point theorem.

The proof of convergence of solution to the system (5.3) (or (5.5)) is
due to Mischler.(13) However, as the author observed himself, there is a
missing gap in the proof. To be more precise, Mischler proves convergence
under very strong assumption about the approximation of the collision
integral by a discrete sum. Lemma 4 below proves that this assumption is
fulfilled for our class of approximate collision kernels ah.

Lemma 4. For every test function (j>e C ( R d ) n L x ' ( R d ) and almost
all v, v, in Rd, d^3,

Proof, According to the definition of ah the integral in the left hand
side of (5.6) is in fact a sum which is defined as follows. We take two
vectors v,= Ch(v) and v,= Ch(v,) and span the sphere S d - l ( v , , v,) with the
center (v, + v,.)/2 and diameter |v, —v 7 | . Then we consider all points from
the grid Qh which belong to that sphere and form pairs of antipodal points.
Denoting by (v*., v,) such pairs and by rij their number, we can write

Then it is clear that the statement of the lemma is exactly Corollary 4 from
our paper.(15) The only difference is that the corollary has been proved for
d= 3 but the proof is similar for d^ 3. |

Taking in (5.5) a sequence of truncation constants Rh such that
Rh -» I as H-* 0, we obtain the following theorem on convergence. Its
proof is a combination of the original proof due to Mischler(13) and our
Lemma 4.



Theorem 3. For h—>0 and every t!>0 a sequence of solutions fh

of the initial-value probem (5.5) with initial data fulfilling condition (5.2)
converges weakly in L I ( [0 , t,], L l ( R 2 d ) ) , d > 3 , up to the extraction of a
subsequence, to a renormalized solution of the Boltzmann Eq. (5.1).
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